JWST Carina Nebula

Classroom Stories: Teaching Astronomy to Primarily Non-science Students in Group-setting Activities, by Sandi Brenner (Bryant University)

I teach an Introductory Astronomy course at Bryant University – a small university with a total undergraduate enrollment of a little over 3,000 students.  Although Bryant University has a College of Arts & Sciences (which included only one ‘Department of Science’,) and now a School of Health and Behavioral Sciences, it is well known for its College of Business.  This is where most of my students come from.  In my class, I try to not only teach them all about our amazing universe, but also ‘how’ we know all of this.  Sometimes the ‘how’ is mathematical and sometimes it isn’t.  I’ve also run into semesters where we get so far behind (a semester when we seemed to have a class-canceling snowstorm every week or many tech issues during COVID), that covering the entire syllabus was very challenging.  So, over the years of teaching, I have developed a number of in-class group activities (“In-class Homework”) that help in my mission.

When I started these activities, some of them were begun in class, but had an ‘out of the class’ component.  Unfortunately, group dynamics don’t always work well, and a number of students had trouble meeting with their group outside of class, resulting in reduced grades.  These were in the days before zoom, so to solve this, all activities are now only in the classroom.  Fortunately, my class meets for 1¼ hours, so there is time for the activities and then (sometimes) time left over to return to the class lecture.  Mathematically speaking, I am dealing with a math-challenged group.  Ask them to calculate, for example interest, they can do it in their sleep, but the minute I ask them to calculate circular velocity, they look at me like I have two heads.  These are smart students, but many of them tell me “I don’t understand science.”  Hence my challenge!

I cover Kepler’s Laws and Newton’s Laws early in the semester.  To show the importance of math in astronomy and spaceflight, I developed a multi-part group activity where the premise is that the group is the first manned mission to Mars.  Think The Martian but with no infrastructure on the planet.  In part 1, I have the students calculate the spacecraft’s orbital period and semi-major axis using Kepler’s Laws, as well as the round-trip travel time needed for a simple conversation between astronauts on Mars and mission control on Earth.  In part 2, they calculate first the escape speed needed to leave Earth’s orbit, then the speed of Mars in its orbit.  The students work in groups, but each student submits their calculations for grading.  I do walk around the room to help the students as needed (and often a lot is needed, including how to use the calculator to complete the calculations.)  At the end of the ‘part 2’ activity I show them the clip from The Martian where Rich Purnell explains his proposal to the group (my favorite scene of the movie – ‘the math checks out’.) 

I also have several non-mathematical activities that I’ve used, including one that helps the students to learn about the “how we know what we know” and one that is perfect for the “uh-oh I’m out of time, what do I do” moment near the end of the semester.  I look forward to discussing my activities with you in an upcoming coffee break!  I would love to hear your thoughts about class activities as well.  The coffee break will be held Thursday, December 1, 2022, at 3pm EST.  You can sign up to join us here.  If you are reading this after the fact, you can get a link to the recording by reaching out to astronomy@wwnorton.com.  Don’t forget to bring your favorite afternoon beverage and I look forward to seeing you on December 1st!

-Sandi Brenner, Bryant University


Feed You can follow this conversation by subscribing to the comment feed for this post.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name and email address are required. Email address will not be displayed with the comment.)